## Split Plot Design.

Dr. Mutua Kilai

Department of Pure and Applied Sciences

Jan-April 2024



#### Introduction

- In some multifactor factorial experiments we may be unable to completely randomize the order of runs.
- This often results in a generalization of the factorial design called a split-plot design
- The linear model for the split-plot design is

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \gamma_k + (\tau \gamma)_{ik} + (\beta \gamma)_{jk} + (\tau \beta \gamma)_{ijk} + \epsilon_{ijk}$$

$$i = 1, 2...r, j = 1, 2, ...a, k = 1, 2, ...b$$

• where  $\tau_i$ ,  $\beta_j$  and  $(\tau, \beta)_{ij}$  represent the whole plot and correspond respectively to replicates, main treatments (factor A) and whole plot error (replicates  $\times A$ ) and  $\gamma_k$ ,  $(\tau\gamma)_{ik}$ ,  $(\beta\gamma)_{jk}$  and  $(\tau\beta\gamma)_{ijk}$  represents the subplot and correspond respectively to the subplot treatment (factor B), the replicates  $\times B$  and AB interactions and the subplot error (replicates  $\times$  AB)

# Advantages of a split plot design in experimental design.

- Cost: The cost of running a set of treatments in splitplot order is generally less than the cost of the same experiment when completely randomized.
- **Efficiency**: Split-plot experiments are not just less expensive to run than completely randomized experiments; they are often more efficient statistically.
- Validity: Completely randomized designs are prescribed frequently in industry, but are typically not run as such in the presence of hard-to-change factors

### **Analysis**

#### Whole-Plot Analysis

- This part of the analysis is based on comparison of whole-plot totals.
- The levels of A are assigned to whole plots within blocks according to randomized complete block design and so the sum of squares for A needs no block adjustment.
- There are a-1 degrees of freedom for A so the sum of squares are given by:

$$SS_A = \frac{\sum_j y_{.j.}^2}{rb} - \frac{y_{...}^2}{rab}$$

ullet There are r-1 degrees of freedom for the blocks giving block sum of squares

$$SS_R = \frac{\sum_i y_i^2}{ab} - \frac{y_{...}^2}{rab}$$

- There are a whole plots nested within each of the r blocks so there are in total r(a-1) whole-plot degrees of freedom.
- Of these a-1 are used to measure the effects of A leaving (r-1)(a-1) degrees of freedom for whole-plot error.

- Equivalently this can be obtained by the subtraction of the block and A degrees of freedom from the whole-plot total degrees of freedom i.e (ra 1) (r 1) (a 1) = (r 1)(a 1)
- So the whole plot error sum of squares is obtained:

$$SS_{E1} = \frac{\sum_{i} \sum_{j} y_{ij}^{2}}{b} - \frac{y_{...}^{2}}{rab} - SS_{R} - SS_{A}$$

• The whole plot error mean square

$$MSE_1 = \frac{SSE_1}{(r-1)(a-1)}$$

is used as the error estimate to test the significance of whole plot factor A

### Sub-Plot Analysis

- This part of the analysis is based on the observations arising from the split-plots within whole-plots
- ullet There are  $\it rab-1$  total degrees of freedom and the total sum of squares is

$$SST = \sum_{i} \sum_{j} \sum_{k} y_{ijk}^{2} - \frac{y_{...}^{2}}{rab}$$

• Sum of squares for *B* is given by:

$$SS_B = \frac{\sum_k y_{..k}^2}{ra} - \frac{y_{..k}^2}{rab}$$

corresponding to b-1 degrees of freedom

The interaction degrees of freedom is given by

$$SS_{AB} = \frac{\sum_{i} \sum_{j} y_{.jk}^{2}}{r} - \frac{y_{...}^{2}}{rab} - SS_{A} - SS_{B}$$

The split-plot error sum of squares can be calculated as

$$\mathit{SSE}_2 = \mathit{SST} - \mathit{SS}_R - \mathit{SS}_A - \mathit{SSE}_1 - \mathit{SS}_B - \mathit{SS}_{AB}$$
 with  $\mathit{a}(r-1)(b-)$ 

### ANOVA Table

| Source                  | Df          | SS      | MSS     | F                        |
|-------------------------|-------------|---------|---------|--------------------------|
| Whole Plot Analysis     |             |         |         |                          |
| Replication             | r-1         | SSR     |         |                          |
| Main Plot Treatment (A) | a-1         | SSA     | MSA     | $\frac{MSA}{MSE_1}$      |
| Main plot error $E_1$   | (r-1)(a-1)  | $SSE_1$ | $MSE_1$ | WISE                     |
| Sub-plot Analysis       | , , , ,     |         |         |                          |
| Sub-plot treatment(B)   | b-1         | SSB     | MSB     | $\frac{MSB}{MSE_2}$      |
| Interaction             | (a-1)(b-1)  | SSAB    | MSAB    | MSAB<br>MSE <sub>2</sub> |
| Sub-plot error $E_2$    | a(r-1)(b-1) | $SSE_2$ | $MSE_2$ | WISE <sub>2</sub>        |
| Total                   | rab-1       | SST     | _       |                          |
|                         |             |         |         |                          |

### Example

In a study carried out by agronomists to determine if major differences in yield response to N fertilization exist among different varieties of jowar the main plot treatments were three varieties of jowar V1, V2 and V3 and the sub-plot treatments were N rates of 0, 30 and 60 Kg/ha. The study was replicated four times and the data shown in Table 1

# Data

|                                      |         | N rate, Kg/ha |      |      |
|--------------------------------------|---------|---------------|------|------|
| Replication                          | Variety | 0             | 30   | 60   |
| 1                                    | V1      | 15.5          | 17.5 | 20.8 |
|                                      | V2      | 20.5          | 24.5 | 30.2 |
|                                      | V3      | 15.6          | 18.2 | 18.5 |
| II                                   | V1      | 18.9          | 20.2 | 24.5 |
|                                      | V2      | 15.0          | 20.5 | 18.9 |
|                                      | V3      | 16.0          | 15.8 | 18.3 |
| III                                  | V1      | 12.9          | 14.5 | 13.5 |
|                                      | V2      | 20.2          | 18.5 | 25.4 |
|                                      | V3      | 15.9          | 20.5 | 22.5 |
| IV                                   | V1      | 12.9          | 13.5 | 18.5 |
|                                      | V2      | 13.5          | 17.5 | 14.9 |
| Dr. Mutua Kilai   Split Plot Design. | V3      | 12.5          | 11.9 | 10.5 |

### Steps of Analysis

Calculate the replication totals (R) and the grand total (G) by first constructing a table for the replication  $\times$  variety totals

|                   | Variety | 1     |       |                      |
|-------------------|---------|-------|-------|----------------------|
| Replication       | V1      | V2    | V3    | Replication Total(R) |
| 1                 | 53.8    | 75.2  | 52.3  | 181.3                |
| II                | 63.6    | 54.4  | 50.1  | 168.1                |
| III               | 40.9    | 64.1  | 58.9  | 163.9                |
| IV                | 44.9    | 45.9  | 34.9  | 125.7                |
| Variety Total (A) | 203.2   | 239.6 | 196.2 |                      |
| Grand Total G     |         |       |       | 639.0                |
|                   |         |       |       |                      |

We construct a second table for the variety  $\times$  nitrogen totals

|       | Variety |      |      |           |
|-------|---------|------|------|-----------|
|       | V1      | V2   | V3   | Nitrogen  |
|       |         |      |      | Total (B) |
| $N_0$ | 60.2    | 69.2 | 60.0 | 189.4     |
| $N_1$ | 65.7    | 81.0 | 66.4 | 213.1     |
| $N_2$ | 77.3    | 89.4 | 69.8 | 236.5     |

### Various Sum of Squares

The correction factor

$$C.F = \frac{G^2}{rab} = \frac{639 \times 639}{4 \times 3 \times 3} = 11342.25$$

$$SST = [(15.5)^2 + (20.5)^2 + ... + (10.5)^2] - CF = 637.97$$

Replication Sum of Squares =

$$\frac{\sum R^2}{ab} - C.F = \frac{(181.3)^2 + (168.1)^2 + (163.9)^2 + (125.7)^2}{3 \times 3} - 11342.25$$

= 190.08

Sum of Squares due to variety (SSA)

$$SSA = \frac{\sum A^2}{rb} - CF = \frac{(203.2)^2 + (239.6)^2 + (196.2)^2}{4 \times 3} - 11324.25 = 90.487$$

Main Plot error

$$SSE_1 = \frac{\sum (RA)^2}{b} - C.F - SSR - SSA$$

$$\frac{(53.8)^2 + (63.6)^2 + ... + (34.9)^2}{3} - 11342.25 - 190.08 - 90.487 = 174.103$$

Sum of squares due to Nitrogen (SSB)

$$SSB = \frac{\sum B^2}{ra} - C.F = \frac{(189.4)^2 + (213.1)^2 + (236.5)^2}{4 \times 3} - 11342.25 = 92.435$$

Sum of Squares due to interaction

$$SS_{AB} = \frac{\sum (AB)^2}{r} - CF - SSA - SSB$$

$$= \frac{(60.2)^2 + (65.7)^2 + ... + (69.8)^2}{4} - 11342.25 - 90.487 - 92.435 = 9.533$$

Sub plot error  $SSE_2 = SST - All$  other sum of squares

 $SSE_2 = 637.97 - 190.08 - 90.487 - 174.103 - 92.435 - 9.533 = 81.332$ 

### **ANOVA Table**

| Source             | DF | SS      | MSS    | F     |
|--------------------|----|---------|--------|-------|
| Replication        | 3  | 190.08  | 63.360 |       |
| Variety (A)        | 2  | 90.487  | 45.243 | 1.56  |
| Error(a)           | 6  | 174.103 | 29.017 |       |
| Nitrogen (B)       | 2  | 92.435  | 46.218 | 10.23 |
| Variety × Nitrogen | 4  | 9.533   | 2.383  |       |
| Error(b)           | 18 | 81.332  | 4.518  |       |
| Total              | 35 | 637.97  |        |       |
|                    |    |         |        |       |

# Thank You!